DOI: 10.33764/2618-981X-2019-9-98-105

ПОВЫШЕНИЕ ТОЧНОСТИ И ОБЕСПЕЧЕНИЕ НАДЕЖНОСТИ ОПТИЧЕСКИХ СИСТЕМ ПРИ ПРОВЕДЕНИИ ИЗМЕРЕНИЙ

Валерик Сергеевич Айрапетян

Сибирский государственный университет геосистем и технологий, 630108, Россия, г. Новосибирск, ул. Плахотного, 10, доктор технических наук, зав. кафедрой специальных устройств инноватики и метрологии, тел. (383)361-07-31, e-mail: v.s.ayrapetyan@sgga.ru

Георгий Алексеевич Куриленко

Новосибирский государственный технический университет, 630073, Россия, г. Новосибирск, пр. К. Маркса, 20, доктор технических наук, профессор кафедры прочности летательных аппаратов, e-mail: teormech@ngs.ru

В работе рассмотрен способ виброизоляции оптических приборов, существенно улучшающий точность измерений. Представлен разработанный термографический метод определения характеристик статической трещиностойкости металлов, позволяющий повысить их достоверность на 30% и тем самым надежность работы оптических систем при проведении измерений.

Ключевые слова: защита от вибрации, достоверность измерений, термографический метод, трещиностойкость.

INCREASE OF ACCURACY AND SAFETY SECURING OF OPTOMECHANICAL DEVICES WHENMEASURING

Valerik S. Ayrapetyan

Siberian State University of Geosystems and Technologies, 10, Plahotnogo St., Novosibirsk, 630108, Russia, D. Sc., Head of Department of Special Devices for Innovation and Metrology, phone: (383)361-07-31, e-mail: v.s.ayrapetyan@sgga.ru

Georgy A. Kurylenko

Novosibirsk State Technical University, 20, Prospect K. Marx St., Novosibirsk, 630073, Russia, D. Sc., Professor, Department of Strength of Aircraft, e-mail: teormech@ngs.ru

This article examines the vibration-proof devices, essentially improving accuracy of measuring. A new thermographic method for definition of static crack resistance characteristics of material is offered. This method allows define these characteristics more precisely and quickly, increasing the reliable of optomechanical devices.

Key words: vibration protection, reliability of measuring, thermographic method, crack resistance.

Современные оптические экспериментальные исследования предъявляют высокие требования к оптико-механическим системам, которые должны обладать достаточной точностью, надежностью и стабильностью работы для обеспечения высокоточных пространственно-временных измерений. Эта проблема особенно актуальна при проведении лидарных измерений в открытой атмосфе-

ре, когда лазерный источник и все оптические элементы располагаются либо на подвижной платформе, либо на летательном аппарате. В этом случае оптикомеханические приборы и лазеры, используемые для метрологических измерений, эксплуатируются в экстремальных условия при значительных внешних нагрузках и предъявляемые к ним требования не снижаются.

Решение этой проблемы следует рассматривать в двух аспектах.

Первый аспект – технологический, требующий виброзащиты оптической системы при производстве от фоновой вибрации производственных и лабораторных помещений.

Второй аспект — эксплуатационный, требующий, с одной стороны, обеспечения прочностной надежности отдельных узлов и в целом оптической системы, а с другой стороны, достаточной точности проводимых измерений в условиях вибрационных и других воздействий при их эксплуатации.

В настоящее время разработано множество различных конструкций виброзащитных устройств, каждое из которых имеет свою область применения [1–3]. Об универсальном устройстве пока говорить рано, но, как отмечают практически все авторы, самой актуальной остается проблема повышения качества виброзащиты.

В [1, 2] разработана виброзащитная платформа с упругим элементом (рис. 1), позволяющая получить существенное продвижение в решении этой проблемы.

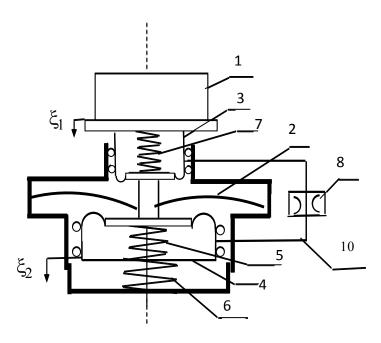


Рис. 1. Виброзащитная платформа

Защищаемый прибор 1 опирается на подвес 2 в виде продольно-сжатой балки (рессоры) квазинулевой жесткости и пружину 6 через гидроцилиндры 3 и 4. Полости этих гидроцилиндров соединяются каналом 10 со встроенным дроссе-

лем 8. Цилиндро-поршневые пары 3 и 4 содержат также упругие элементы 7 и 5 вспомогательного нагружения. Расчетное положение прибора (рабочую точку) устанавливают для создания распорного усилия в рессоре 2, при котором она будет иметь квазинулевую жесткость. Достигается это варьированием натяга пружины 6.

Платформа работает следующим образом. При увеличении, например, веса прибора 1 повышается давление в гидроцилиндре 3, и начинается переток жидкости в гидроцилиндр 4, в результате чего увеличивается натяг пружины 6. Благодаря этому рабочую точку подвеса 2 можно удержать на прежнем уровне. Время перетекания жидкости при этом должно быть существенно больше периода колебаний прибора 1 на подвесе 2 и регулируется величиной проходного сечения канала дросселя 8 [4].

В качестве обобщенной координаты выберем координату ξ_1 , отсчитываемую от положения равновесия защищаемого прибора 1 с массой m. ξ_2 — координата, определяющая положение цилиндра 4.

Рассмотрим свободные колебания системы с нелинейной упругой характеристикой рессоры. Для первоначальной настройки рабочей точки к массе m присоединяем груз массой m_1 . Тогда уравнение движения объекта 1 запишется так [5]

$$(m+m_1)\ddot{\xi}_1 = -k_1\xi_M - k_3\xi_M^3 - c_3\xi_2 + m_1g, \tag{1}$$

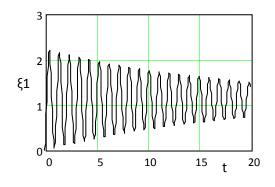
где k_1 , k_3 – коэффициенты упругой характеристики рессоры 2,

 $\xi_{\scriptscriptstyle M}$ – ее максимальный прогиб,

 c_3 – коэффициент жесткости пружины 6.

Учтем также перемещение цилиндра 4 отдельно и этого цилиндра вместе с поршнем при условии, что массой поршней и цилиндров пренебрегаем:

$$P_{2}S_{2} = c_{3}\xi_{2} + c_{2}(\xi_{2} - \xi_{M})$$

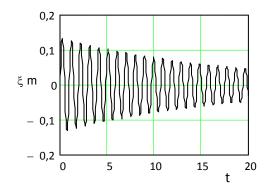

$$P_{1}S_{1} = k_{1}\xi_{M} + c_{3}\xi_{2} - c_{1}(\xi_{1} - \xi_{2}),$$
(2)

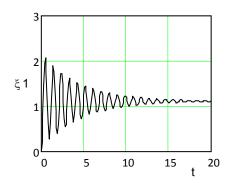
где c_1, c_2 коэффициенты жесткости вспомогательных пружин 7 и 5;

 S_1, S_2 — соответственно площади верхнего, нижнего цилиндров;

 $P_1,\ P_2$ — соответственно давления жидкости в верхнем и нижнем цилиндрах.

Одним из важных показателей данной виброзащитной системы является время возвращения рабочей точки рессоры в начальное положение. Из решения уравнений (1) и (2) на рис. 2 показан процесс затухания свободных колебаний объекта и рессоры при использовании в качестве жидкости керосина, у которого динамический коэффициент вязкости $\mu = 1,5 \cdot 10^{-3}$ Пас.




Рис. 2. Затухание свободных колебаний (керосин)

Параметры системы:

$$S_2/S_1 = 5$$
, $c_3 = 22 \cdot 10^3$ H/M, $k_1 = -17 \cdot 10^3$ H/M, $m = 100$ KG, $m_1 = 5$ KG.

Из рис. 2 видно, что колебательный процесс объекта и рессоры около равновесного положения длится более 20 сек. В первые секунды объект отклоняется от своего нового начального положения около 1 см. В это же время рессора получает небольшое перемещение около 0,1 см, так как процесс перетекания жидкости начинается сразу.

Затухание колебаний можно ускорить если увеличить коэффициент вязкости. На рис. З показан затухающий процесс свободных колебаний, где в качестве жидкости взят скайдрол (авиационная рабочая жидкость) с коэффициентом вязкости $\mu = 1,16 \cdot 10^{-2}$ Пас.

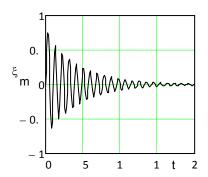


Рис. 3. Свободные колебания (скайдрол)

Из рис. 3 видно, что процесс возвращения рабочей точки рессоры носит также колебательный характер, но затухает около 15 сек. При этом первое отклонение объекта почти не изменилось, а рессора получает больший прогиб в сравнении с предыдущим, около 0,6 см.

Исследовано также затухание свободных колебаний при использовании в качестве рабочих жидкостей трансформаторного и оливкового масел. Показано, что с увеличением коэффициента вязкости время возвращения рессоры в начальное положение возрастает и начальная амплитуда объекта практически на меняется.

Для исследования вынужденных колебаний данной системы придадим уравнению (1) вид

$$\ddot{\xi}_1 = -c_{11}\xi_M - c_{12}\xi_1 - c_{13}\xi_M^3 - 2n\xi_1 - A_e\dot{\omega}^2\sin(\omega t),\tag{3}$$

где
$$c_{11}=rac{k_1+c_3\left(1-rac{S_1}{S_2}
ight)}{m+m_1}$$
, $c_{12}=rac{c_3S_1}{S_2(m+m_1)}$, $c_{13}=rac{k_3}{m}$.

В уравнении (3) учитывается нелинейность упругой характеристики рессоры и дополнительное вязкое демпфирование, в котором учитывается нелинейность упругой характеристики рессоры и дополнительное вязкое демпфирование.

Рассматривается кинематическое воздействие с амплитудой основания A_e и частотой ω . Расчет проведен при амплитуде колебаний основания $A_e = 2 \cdot 10^{-2}$ м и коэффициентах $n = 2,5 \frac{1}{c}$, $k_3 = 2 \cdot 10^7 \frac{H}{M^3}$. На рис. 4 показан рассчитанный график зависимости коэффициента передачи (КП) от частоты колебаний основания ν , из которого видно, что для КП получены вполне приемлемые значения. Так при резонансной частоте $\nu = 1$ Г μ КП = 1,6, а при $\nu > 5$ Г μ перетекания жидкости нет и цилиндры 3 и 4 вместе с объектом будут двигаться как одно целое.

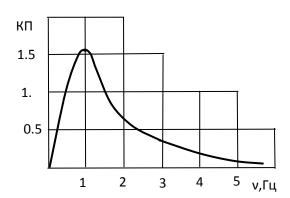


Рис. 4. Коэффициент передачи при кинематическом воздействии

Рассмотрим весьма актуальный случай — ударную нагрузку. Пусть, по основанию нанесен удар силой $F_0 = 290~H$ с длительностью T = 0,1~cек. Уравнение (3) этом случае запишется так

м случае запишется так
$$m\ddot{\xi}_{1} = -k_{1}\xi_{M} - k_{3}\xi_{M}^{3} - c_{3}\xi_{2} - b\dot{\xi}_{1} + F_{0} \cdot \sin\frac{\pi T}{t} , \quad \pi pu \ t < T$$

$$m\ddot{\xi}_{1} = -k_{1}\xi_{M} - k_{3}\xi_{M}^{3} - c_{3}\xi_{2} - b\dot{\xi}_{1} , \quad \pi pu \ t \geq T ,$$

$$(4)$$

Из рис. 5 видно, что в этом случае колебания затухают практически за один период. Движение объекта и рессоры почти синхронно.

Рис. 5. Затухание колебаний при ударе

Определенный интерес представляет аналогичное исследование виброзащитной подвески с электромеханическими элементами управления.

На рис. 6 показана такая подвеска, где 1 — защищаемый объект, 2 — нелинейно-упругий элемент, 3 — регулировочная пружина с постоянной жесткостью C_2 , натягом которой можно компенсировать изменение веса объекта. Для этого конец пружины перемещают механизированным приводом 4, используя показания датчика положения объекта.

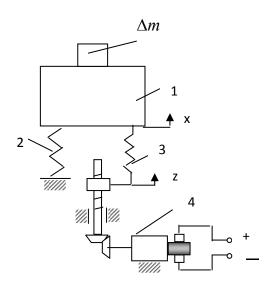


Рис. 6. Схема виброзащитной подвески с электромеханическим управлением

Рассмотрим уравнение вынужденных колебаний объекта массы m, например, при увеличении его массы на Δm и перемещении конца пружины 3 по закону $z = v \cdot t$ (V – скорость перемещения).

$$\ddot{x} + k_1^2 x + k_3 x^3 + k_2 z + 2n\dot{x} - G = A_e \omega^2 \sin \omega t$$
 (5)

где k_1, k_3 –коэффициенты нелинейной упругой характеристики,

 k_2 – коэффициент упругой характеристики регулировочной пружины,

n – коэффициент демпфирования,

$$G = \Delta mg/(m + \Delta m)$$
.

Интегрируем (5) при:

$$k_1 = 6,28 \text{ c}^{-1}, \ k_2 = 181,1 \text{ c}^{-2}, \ k_3 = 3,96 \text{ cm}^{-2} \text{c}^{-2}, \ n = 3 \text{ c}^{-1},$$
 $m = 100 \text{ kg}, \ \Delta m = 20 \text{ kg}, \ A_e = 2 \text{ cm}, \ \omega = 2 \cdot \pi \cdot v = 3,142 \text{ c}^{-1}, \ v = 0,4 \text{ cm/c}.$

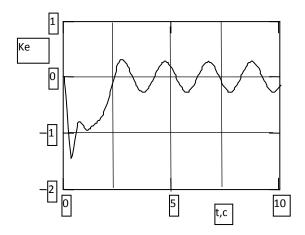


Рис. 7. Зависимость относительного перемещения объекта с добавочной массой от времени

На рис. 7 показана зависимость относительного перемещения K_e объекта с добавочной массой от времени. Процесс возвращения рабочей в номинальное состояние в данном случае занял около 3 с. Конец регулировочной пружины достаточно было переместить на 0.92 см.

Заключение

Подводя итог, следует отметить, что описанные виброзащитные устройства с автоматическим поддержанием рабочей точки подвеса на заданном уровне апробованы в лабораторных условиях [6] и показали достаточно высокую эффективность защиты без энергопотребления в системе управления.

Считаем, что эти устройства могут существенно улучшить виброизоляцию оптических систем, используемых для проведения метрологических измерений, и тем самым повысить точность измерений.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Kurilenko G.A., Yur'ev G.S., Rykov A.A. Synthesis of an Active Vibrational Protection System // Russian Engineering Research. 2014. №7. P. 440-443.
- 2. Kurilenko G.A., Ayrapetyan V.S. Determination of the Fracture Toughness of Optomechanical Devices // OpticsandPhotonicsJournal.2016. №6. P 298-304.
- 3. ХелланК. Введение в механику разрушения. Пер. с англ. / Под ред. Морозова Е.М. М., 1988. 364 с.
- 4. Ковчик С.В., Морозов Е.М. Механика разрушения и прочность материалов. Справочное пособие. / Под.ред. Панасюка В.В. Киев: Наукова думка, 1988. Т.З. 435 с.
- $5.\ \Gamma OCT\ 25.506-85.\ P$ асчеты и испытания на прочность. Методы механических испытаний металлов. Определение характеристик трещиностойкости (вязкости разрушения) при статическомнагружении // М: Изд. стандартов, 1985. 61 с.
- 6. Куриленко Г.А., Пшеничный А.Б. Способ определения трещиностойкости материалов // А.с. № 1820278. Бюл. изобр.1990. №21. С. 72.
 - 7. Базаров И.П.Термодинамика. М.: Высшая школа, 1983. 344 с.

© В. С. Айрапетян, Г. А. Куриленко, 2019